
 26 

 686 

Figure S1. Cellular composition of populations defined by flow cytometry. a, Abundance 687 

of different gates as fraction of total. b, Quantification of cell type composition for each FACS 688 

gate shown in main figure 1a. 689 

.CC-BY-NC 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted July 30, 2019. ; https://doi.org/10.1101/718395doi: bioRxiv preprint 

https://doi.org/10.1101/718395
http://creativecommons.org/licenses/by-nc/4.0/


 27 

 690 

Figure S2. Expression of marker genes for haematopoietic populations highlighted on t-691 

SNE. For full lists of marker genes, see table S1. 692 
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 693 

Figure S3. Expression of marker genes for non-haematopoietic populations highlighted 694 

on t-SNE. For full lists of marker genes, see table S1. 695 
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 696 

Figure S4. Comparison of cell type transcriptomes determined by scRNA-seq to data from 697 

bulk populations described in literature. a, Enrichment of gene expression signatures of 698 

haematopoietic populations in immune cell transcriptomes published by the immgen 699 

consortium (data source: GEO GSE109125)51. b, Enrichment of gene expression signatures of 700 

non-haematopoietic populations in published transcriptomes of populations defined by genetic 701 

markers5,7–9,52; see methods for specification of data sources, and see the supplementary note 702 

for a detailed evaluation of the algorithm used. Error bars indicate standard error of the mean 703 

for n=3 to n=6 bulk transcriptome samples per class. 704 

 705 

 706 

Figure S5. Comparison of clustering methods. a, The optimal number of mesenchymal cell 707 

clusters was determined using the SOUP method15, a semi-soft clustering algorithm designed 708 

to distinguish between distinct cell types and transition states between cell types. b, Main 709 

cluster identity from SOUP highlighted on the t-SNE from figure 1b (mesenchymal cell types 710 

only). c, Comparison of clusters identified by Seurat (Figure 1b) to clusters identified by SOUP 711 

(Figure S5b) demonstrates strong overlap between both methods. 712 

 713 
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 714 

Figure S6. Comparison of cell isolation methods and reference datasets. a,b, Additional 715 

single-cell RNA-seq data was generated as described, except that bone marrow was derived by 716 

flushing bones and  subjected or not subjected to enzymatic digestion. Data was projected to 717 

two dimensions using t-SNE and cell type labels were assigned using the anchoring approach 718 

implemented in seurat353. c,d, Single-cell RNA-seq data from a recent study of different 719 

genetically labelled populations from flushed bone marrow27 was projected to two dimensions 720 

using t-SNE and cell type labels were assigned using the anchoring approach implemented in 721 

seurat353. e, Comparison of cell type frequencies between various published datasets. 722 

.CC-BY-NC 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted July 30, 2019. ; https://doi.org/10.1101/718395doi: bioRxiv preprint 

https://doi.org/10.1101/718395
http://creativecommons.org/licenses/by-nc/4.0/


 31 

 723 

Figure S7. Technical properties of the LCM-seq dataset. a, Boxplots comparing the number 724 

of genes observed per sample in different protocols. All samples were down-sampled to 1 725 

million reads for comparison. For the dataset presented in main figure 3, the protocol relying 726 

on random priming was used. b, Representative images of samples collected for LCM-seq; 727 

scale bar corresponds to 100 µm. c, Immunofluorescence staining of a BM arteriole stained for 728 

Col1a1, Pdpn and CD31. Scale bar: 20 µm. d, Schwann cell markers were lowly expressed 729 

across all niches e, haematopoietic markers were highly expressed across all niches. 730 
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 731 

Figure S8. Evaluation of the CIBERSORT algorithm, see also supplementary note. a, 732 

Heatmap of population-specific marker genes used for the algorithm. b,c, Simulations to assess 733 

the ability of CIBERSORT to decompose individual samples; see supplementary note for detail. 734 
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d, CIBERSORT estimates of cell type composition of total bone marrow, compared to the cell 735 

type composition estimate from 10x genomics (see figure S1b). e,f, Simulations to assess the 736 

ability of CIBERSORT to identify changes in population frequencies across multiple samples; 737 

see supplementary note for detail. g, FACS was used to assemble 8 different pools of B220+ B-738 

cells, CD3+ T/NK-T cells and Gr1+SSChigh neutrophils. Each pool contained a total of 100 cells 739 

at predefined ratios of B cells, T cells and neutrophils. Pools were then fixed and processed 740 

using the LCM-seq protocol, and CIBERSORT was used to decompose their composition. 741 

Estimates for T and NK cells, as well as different B-cell subpopulations, were summed for the 742 

display. h, Simulations to assess the ability of CIBERSORT to discriminate between similar 743 

cell types; see supplementary note for detail. Red squares highlight pairs of similar cell types. 744 

i, Stability of the CIBERSORT estimates from main figure 3e with regard to re-sampling of the 745 

marker gene lists used; see supplementary note for detail. 746 

 747 
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 748 

Figure S9. Whole-mount imaging and data analysis. a, Whole-mount imaging data of a 749 

Cxcl12-GFP bone section stained for Alpl and Emcn was segmented in 3D using the imaris 750 

software. Large Alpl+ surfaces (red, corresponding to endosteum and arteries) were identified 751 

and any GFP+ spots with <20µm proximity to these structures were excluded from further 752 

analysis (yellow spots). Remaining GFP+ spots were classified as within 15µm of sinusoidal 753 

vessels (purple dots), of away from sinusoidal vessels (cyan dots). GFP+ spots were further 754 

classified as Alpl+ (right panels, red spots) or Alpl- (right panels, green spots). b, Like in main 755 

figure 4c. In ROI 3, asterisk correspond to GFP+Alpl+ protrusions on, but clearly distinct from, 756 

Sca1+ arteriolar endothelial cells. In ROI 4, various z-sections of a highly reticulate Cxcl12-757 

GFP+Alpl+ cell are shown. 758 

 759 
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760 

Figure S10. Analyses using RNA-Magnet. a, Overview of the receptor-ligand list used. See 761 

methods for data sources, and table S3 for the complete list. b, Stability of the RNA-Magnet 762 

location estimate for different choices of the fuzzification parameters k and x0. For each 763 

parameter set, RNA-Magnet location estimates were summarised per cell type, and compared 764 

to the summarised location estimate displayed in figure 5c. The asterisk indicates the parameter 765 

set used in figure 5c. c, Choice of local neighbourhoods. As detailed in the methods section, 766 

RNA-Magnet works by identifying interactions specific to a single cell compared to similar 767 

cells. The figure displays the size of local neighbourhoods for four representative cells 768 
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demarked by a black triangle. d, Detailed comparison of location estimates obtained from 769 

LCM-seq and RNA-Magnet. See also main figure 5c. e, Fully labelled display of the network 770 

from main figure 7a. f, Expression of selected cytokines and growth factors involved in bone 771 

remodelling. 772 

 773 

 774 

Figure S11. Index-sorting analysis of LinnegVcam1+ cells. a, Sorting scheme used b, 775 

Expression of key marker genes confirm the cell type assignment obtained by scmap, cf. main 776 

Figure 6c. 777 

 778 

Methods 779 

Mouse experiments 780 

Mice were purchased from the distributors Janvier and Envigo, and housed under specific 781 

pathogen-free conditions at the central animal facility of the German Cancer Research 782 

Center. All animals used were 8-12 weeks old C56Bl/6J females. All animal experiments were 783 
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niches. We then estimated the preferred localisation of each cell c to one of these four niches N 1082 

as 1083 

𝑙𝑜𝑐(𝑐) = argmax
ON]

𝑆′(𝑐, 𝐾) 1084 

and we estimated an ‘adhesiveness’ score for each cell based on the total number of receptors 1085 

it expresses (cf. equation 1) 1086 

𝑎𝑑ℎ(𝑐) =L𝑓(𝑥IJ)
J∈S

 1087 

For figure 7a+b, we visualized which populations specifically interact with each other by 1088 

computing population-wise mean RNA-Magnet scores, and setting a threshold value above 1089 

which cell types were connected in a graph. 1090 

𝑅4(𝐾,𝑀) = L
1
|𝑀|𝑆′(𝑖, 𝐾)

$∈b

 1091 

Finally, to obtain an estimate of total signal derived from different niches in figure 7c, we 1092 

applied RNA-magnet to ligand expression data from LCM-seq. 1093 

 1094 

Code availability 1095 

Our implementation of RNA-Magnet and CIBERSORT, as well as vignettes for re-creating key 1096 

analysis steps are available at http://git.embl.de/velten/rnamagnet/ 1097 

 1098 

Data availability 1099 

Data are available for interactive browsing at http://nicheview.shiny.embl.de. Raw sequencing 1100 

data and count tables are available through GEO (GSE122467, reviewer access token 1101 

spqnisgszdopdkh). 1102 

 1103 

Supplementary Table S4. Antibodies used in this study. 1104 

Antibody Clone Company 

Alpl Goat Polyclonal ThermoFisher 

Anti-Goat IgG AF 546 (whole mount) Donkey polyclonal ThermoFisher 

Anti-Rat IgG DyLight 650 (whole 

mount) 

Donkey polyclonal ThermoFisher 

B220 RA3-6B2 eBioscience 

CD105 MJ7/18 eBioscience 

CD106 (VCAM1) 429 BioLegend 

CD11b M1/70 eBioscience 
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CD140a (PDGFRa) APA5 eBioscience 

CD144/VE-Cad VECD1 BioLegend 

CD200 OX-90 BD 

CD31 390 eBioscience 

CD4 RM4-4 eBioscience 

CD41 eBioMWReg30 eBioscience 

CD45 30-F11 eBioscience 

CD51 RMV-7 eBioscience 

CD61 2C9.G2 BD/BioLegend 

CD71 C2 BD 

CD8 53-6.7 BD 

Collagen I Rabbit polyclonal Bio Trend 

CXCL12/SDF-1 79018 R&D 

Donkey Anti-Goat IgG H&L Donkey polyclonal Abcam 

Donkey Anti-Rabbit IgG H&L Donkey polyclonal Abcam 

Elastin Rabbit polyclonal Abcam 

Endomucin (IF, LCM) V.7C7 eBioscience 

Endomucin (whole mount) V.7C7 Stanta Cruz 

Goat anti-rat IgG Goat polyclonal BioLegend 

Goat Anti-Syrian hamster IgG H&L Goat polyclonal Abcam 

Gr1 RB6-8C5 eBioscience 

Podoplanin 8.1.1 BioLegend 

Sca-1 (IF, LCM, FACS) D7 eBioscience 

Sca-1 (whole mount) E13-161.7 BioLegend 

SM22 Rabbit polyclonal Abcam 

Streptavidin APC-eFluor™ 780 

Conjugate 

- eBioscience 

Ter119 TER-119 eBioscience 

 1105 
 1106 
  1107 
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Supplementary Note  1108 

Cell type decomposition from spatial transcriptomics using CIBERSORT 1109 

 1110 

CIBERSORT13 is an algorithm for estimating the cell type composition of a bulk sample, given 1111 

a gene expression profile of the sample and a known gene expression profile for each cell type 1112 

potentially contributing to the sample. Mathematically, the expected expression level xj of gene 1113 

j in a bulk sample is the sum of cell type averages, sij, weighted by cell type fractions ai: 1114 

𝑥c = L𝑎$𝑠$c
$

 1115 

Since the number of genes included is always much larger than the number of cell types, this 1116 

formulation results in a well-determined system of linear equations. Conventional approaches 1117 

for its solution however fail to distinguish similar populations and are strongly subjected to 1118 

experimental noise74. CIBERSORT avoids these problems through the use of support vector 1119 

regression, which has been described to a) internally select an optimal subset of minimally 1120 

correlated genes, b) penalize each cell type going into the estimate, favoring sparse solutions 1121 

and c) have a linear penalty function, making it more robust against outliers driven by technical 1122 

variability. 1123 

We used a per-cell type average gene expression matrix defined on 1571 genes with specificity 1124 

to the individual populations (Figure S8a, genes were defined by specificity to a given 1125 

population of 0.8 or greater, as quantified from areas under the ROC curve); we will discuss 1126 

below how the choice of marker gene pre-selection impacts our results. To simplify analyses, 1127 

we merged the highly similar HSPC subtypes into one population for CIBERSORT. In total, 1128 

25 cell types were used for all CIBERSORT analyses. 1129 

 1130 

Evaluation using simulations and bulk RNA sequencing 1131 

To critically evaluate the performance of the CIBERSORT algorithm, we performed a 1132 

simulation study and confirmed the results using bulk RNA-sequencing. As detailed in the 1133 

following, we found that the algorithm excels at comparing relative cell type abundancies 1134 

between niches (i.e. ‘cell type X localizes to niche A over niche B and niche C’), but performs 1135 

only moderately at estimating cell type proportions within a single niche (i.e. it cannot draw 1136 

statements like ‘niche A consists to 70% of cell type X and 30% of cell type Y’). We therefore 1137 

focus our analyses to statements of the first type.  1138 

 1139 
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First, we evaluated the ability of CIBERSORT to estimate cell type proportions in a single 1140 

niche, i.e. a single bulk RNA sequencing sample composed of the cell types described in figure 1141 

1b. For this purpose, we in silico created a bulk RNA sequencing sample by drawing cell type 1142 

frequencies from a uniform Dirichlet distribution with 25 dimensions, resulting in a vector of 1143 

cell type frequencies a (ground truth). We then assumed that a pooled sample of a total of 1000 1144 

cells was to be sequenced. We sampled 1000*a single cells from each population in our main 1145 

dataset, and summed the gene expression values for each gene across all cells contained in the 1146 

sample, resulting in a gene expression vector x. This vector was then decomposed using 1147 

CIBERSORT to result in an estimate of cell type frequencies â. We found that Pearson and 1148 

Spearman correlations between the ground truth a and the estimate â were on the order of 0.6 1149 

(Figure S8b, c); however, populations contributing with more than 1% were identified reliably 1150 

with an area under the curve (AUC) of 0.95. Correlations improved to above 0.9 if a smaller 1151 

number of cell types were selected that contribute to the bulk sample, while leaving the 1152 

population reference unchanged (Figure S8c).  1153 

To confirm this result, we created bulk RNA sequencing data of total bone marrow and 1154 

compared the CIBERSORT estimate of its cellular composition to the estimate from our single 1155 

cell RNA-seq experiment. We found that despite the different RNA-seq protocols used, the 1156 

performance was as expected from our simulation study (Figure S8d; R=0.71, median 1157 

correlation for a sample composed of 12 cell types: 0.77).  1158 

Next, we evaluated the ability of CIBERSORT to estimate changes in cell type proportions 1159 

across multiple samples. For this, we repeated the sampling experiment 15 times and quantified 1160 

the correlation between estimates across samples for each cell type (Figure S8e, f). An optimal 1161 

performance with correlations >0.95 was found for all populations.  1162 

To confirm this result, we used FACS to assemble 8 different pools of B220+ B-cells, CD3+ 1163 

T/NK-T cells and Gr1+SSChigh neutrophils. Each pool contained between 5 and 80 cells of each 1164 

type, for a total of 100 cells. Pools were then fixed and processed using the same protocol used 1165 

for the laser microdissected samples, and CIBERSORT was used to quantify their composition. 1166 

As expected from the simulation study, changes in cell type proportions across samples were 1167 

very accurately identified with a Pearson R of 0.83-0.92 (Figure S8g). 1168 

In line with previous studies13,75, these analyses suggest that CIBERSORT excels at identifying 1169 

changes in cell type proportion across multiple samples but performs only moderately at 1170 

estimating cell type proportions in a single sample. We therefore restrict the use of 1171 

CIBERSORT to comparing relative cell type abundancies between niches, and do not determine 1172 

absolute cell frequencies. 1173 
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 1174 

Finally, we also evaluated the extent to which CIBERSORT is capable of discriminating cell 1175 

types that exhibit similar gene expression profiles (e.g. distinct fibroblast populations or Adipo- 1176 

and Osteo-CAR cells). We therefore simulated 100 bulk samples assuming that cell types co-1177 

occur in a pre-specified manner. Mathematically, we first manually specified a correlation 1178 

structure of cell type co-occurrence C (of dimensions 25x25). We then sampled a cell type 1179 

frequency matrix A (of dimensions 100x25) with a covariance structure C. Importantly, 1180 

correlations were thereby specified and sampled at the level of cell types, and not at the level 1181 

of genes. We then created a bulk RNA expression profile in silico for each sample (row in A) 1182 

as described above, and applied CIBERSORT to estimate its cellular composition. This resulted 1183 

in a matrix of estimated cell type proportions Â. Column correlation structures of A and Â are 1184 

compared in figure S8h. Importantly, cell type co-occurrence is correctly identified and not 1185 

influenced by similarity in the gene expression profile of the reference populations. 1186 

 1187 

In summary, the simulation and bulk RNA sequencing study performed here supports previous 1188 

evaluations of CIBERSORT: The algorithm is ideally suited for identifying changes in cellular 1189 

composition between multiple samples. A more detailed analyses of its performance e.g. with 1190 

regard to noise can be found in ref. 13. 1191 

 1192 

Impact of marker gene selection on CIBERSORT results 1193 

While CIBERSORT internally selects an optimal set of marker genes, it also requires the pre-1194 

specification of a set of reasonably specific markers. To gauge the dependence of CIBERSORT 1195 

results on marker genes, we repeated the analyses of LCM samples (Figure 2) 60 times, each 1196 

time using a random subset of 50%, 75% or 90% of the marker genes of each population. For 1197 

each cell type, we subsequently quantified the fraction of resampling runs that result in the same 1198 

primary location. The result (Figure S8i) allows us to assess the stability of the CIBERSORT 1199 

estimates as follows: 1200 

For Osteoblasts (n=108 marker genes) and Smooth muscle cells (n=82), any 50% of marker 1201 

genes can be left out while still allowing unanimous placement of these cells at the endosteum 1202 

or arteries, respectively. 1203 

For Arteriolar fibroblasts (n=54), Arteriolar endothelial cells (n=50) and Fibroblast-1204 

Chondrocyte precursors (n=37), any 25% of marker genes can be left out while still allowing 1205 

unanimous placement of these cells at their respective locations. 1206 
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For Adipo-CAR cells (n=71), Osteo-CAR cells (n=61), Chondrocytes (n=86) and stromal 1207 

fibroblasts (n=26), if 25% of marker genes are dropped, this resulted in location swaps in 1208 

between 10% and 30% of cases. However, the swap was mostly between the primary and a 1209 

potential secondary location of the cells. 1210 

For Sinusoidal endothelial cells (n=33), endosteal fibroblasts (n=69), and MSCs (n=23), 1211 

estimates depended more strictly on lists of marker genes used. Small numbers of specific 1212 

markers, elevated intra-population heterogeneity and/or a more ubiquitous localization of these 1213 

cells may be factors contributing to the estimation uncertainty. For sinusoids and endosteal 1214 

fibroblasts, we provide further evidence for their localization in figures 2b and 4e, respectively. 1215 
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